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volume at P=O, and k, {, and r are parameters which 
can be related to B~, the pressure derivative of the bulk 
modulus at P=O, i.e., 

k=r-l=B~and~= 12-3B~. (6) 

Of these equations, the Tait equation allows the 
volume to go to zero at a finite pressure (MacDonald, 
1966). Because of this and because it generally does not 
fit experimental data on solids at high pressures as 
well as some of the other equations, it will not he devel­
oped further, except to say that it follows from an 
integration assuming that the isothermal bulk modulus 
is a linear function of pressure (Anderson, 1966), i.e., 

(7) 

A more detailed analysis of the Tait equation has been 
recently given by MacDonald (1966). 

The Birch equation has been used in the form of 
equation (3) with one arbitrary parameter or in the form 
(4) with two arbitrary parameters. This equation is 
derived from the theory of finite strain under the assump­
tion that the total strain energy can be expanded as 
E = Ia"En , where E is the hydrostatic strain in an 
isotropic solid. Equation (4) follows if- an = 0 for all 
n ;;:. 4 and equation (3) follows for all = 0 for all n;;:' 3. 
This assumption, as well as the use of finite strain theory, 
has been discussed by Knopoff (1963). The equation 
should be a rather good representation of the pressure 
volume isotherm at T= 0, for a cubic crystal in a hydro­
static environment for not too large a strain. Birch 
estimates that it can give good results for relatively 
large strain for materials in which { is small (Birch, 
1952). Bernardes and Swenson (1963) observe that the 
experimental data for the alkali metals at low tempera­
tures fit the Birch equation with small values of {, but 
that slight deviations from this equation appear along 
higher temperature isotherms. Gilvarry (1957) notes 
that equation (3) requires th'at the initial value of the 
Gruneisen constant at zero pressure must equal 11/6, 
which, of course, is not satisfied by all solids. This 
indicates that the two parameter equation (4) is neces­
sary to insure that the P-V relation has the correct initial 
curvature at zero pressure. This second constant is 
related to the third-order elastic constants and should 
be kept in Birch's equation for often the third-order 
elastic constants are comparable to the second-order 
elastic constants. Recent high pressure measurements 
(McWhan, 1967) indicate {=-0.40 for MgO, {=-1.02 
for NaCI, and {= - 1. 74 for alpha-quartz. We will here­
after consider only equation (4) when referring to the 
Birch equation. 

The Murnaghan equation, derived by Murnaghan from 
the theory of finite strain (Murnaghan, 1937) is an ap­
proximation in which the instantaneous bulk modulus 

B=- V lap) where V= V(P), is assumed to vary \av T' 

only linearly with pressure. Murnaghan refers to it 
as integrated linear theory (Murnaghan, 1951). It also 
involves the assumptions that the strain is small and 
isotropic and the pressure is hydrostatic. The param­
eters Bo and k = Bo can be determined from measure­
ments at zero press ure or they can be left arbitrary and 
chosen to give the best fit to a set of measurements of 
P versus V. The best fit to measured data is obviously 
obtained if both parameters are allowed to be arbitrary. 
Qnite reasonable fits can be obtained, however, by using 
ultrasonically determined values of Bo leaving only one 
arbitrary parameter to vary to give the best fiL The value 
k has been related to the Gruneisen parameter; i.e., 
k = 2,),+ 1/3, or the initial pressure derivative of the bulk 
modulus, Bo. Rarely does one find the relation between 
k and')' to hold but recently Anderson (1966) has shown 
that precise ultrasonic measurements at rather low pres· 
sures will give values of Bo and Bo which allows Murna­
ghan's equations to represent high pressure isotherms 
fairly well if the compression is not too large. Many au­
thors (see MacDonald, 1966; and Cook and Rogers, 1963) 
have proposed equations of state that are nothing more 
than Murnaghan's equation in a different form and with 
different labeling of the parameters. 

Murnaghan allowed both parameters to vary arbi­
trarily and was able to fit Bridgman's compression 
measurements to 100 khar on Na to within 1.5 percent 
in VIVo. He also observed that the arbitrary coefficients 
varied consider~bly depending upon the region of the 
data used to determine them. He concluded that this 
indicates that the equation is only an approximation 
to the truth and that higher order approximations should 
be considered. A second order theory was also given by 
Murnaghan (1951) which allows the pressure derivative 
of the hulk modulus to vary with pressure. He also 
concluded .that this was not accurate enough for the 
large compression of Na and concluded that the third 
order elastic constants were very important for large 
compression. 

Recently Rose (1967) extended the expansion of the 
instantaneous bulk modulus to terms of order Pl. 

B= (-V~T =Bo+BoP+B~'PlI2. (8) 

Integrating (8) along on isotherm yields the equation 
of state 

P 

(9) 

The coefficients in (8) can be expressed in terms of 
2nd, 3rd, and 4th order single crystal elastic constants 
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as defined by Brugger (1964). For a cubic (m3m sym­
metry) crystal one obtains (Ghate, 1966; Thurston, 1967) 

Bo= (ClI + 2Ct2) 13 
B~=- (Clll +6c1l2+2cl23)/9Bo, and 

B~= (Cllll + 8c1ll2 +6c1122 + 12c1l23 - 2Cl1 -15Bo 
-9BoB~)/27B~. (lO) 

The bulk moduli must be converted from adiabatic to 
isothermal to use in static equations of state. Experi­
mental pressure dependence of the elastic constants 
have been measured for several materials (Lazarus, 
1949; Hughes and Kelly, 1953; Bateman, et at, 1961; 
Daniels and Smith, 1963; Miller and Smith, 1964; 
Chang, 1965; Bogardus, 1965; Bartels and Schuele, 
1965; Chechile, 1967; Koliwad, et at, 1967). 

In principle, Bridgman's equation, equation (1), 
can fit any analytic compression curve if the expansion 
is carried out to enough parameters. However, the use 
of several terms may cause the curve to have anomalous 
variations related to the scatter in the data and not to 
fundamental compressibility. One should not use more 
parameters than is justified by the accuracy of the data. 
For rather incompressible materials two parameters 
seem sufficient to fit the data. But an equation of four 
parameters is not good enough for the alkali metals 
(Bridgman, 1958). 

Gilvarry (1957, 1956) has given an equation of state 
which will generate many of the proposed isothermal 
equations of state for solids 

where nand m are constants. There is no theoretical 
basis for this equation but it can be .made to fit a wide 
class of P-V relations by varying the parameters m 
and n and is equivalent to equations (2) and (3) for given 
choices of m and n. 

Comparisons of these empirical equations of state 
with experiment are not always too conclusive in that 
there is often a great deal of scatter and experimental 
uncertainty in the experiments. J n many cases any or all 
of these equations of state might be argued as valid 
representations because they fit the data to within the 
experimental accuracy. The experimental techniques 
are being improved so that experimentally we are just 
now beginning to be able · to discriminate among the 
proposed equations. There is a more serious problem, 
however, and that is the accuracy in the pressure meas­
urement itself in the experimental equations of state. 
Over the years the proposed pressure scale has changed 
considerably anq there are still large differences be­
tween the pressure scales used by some experimenters 
and considerable uncertainty in the pressure measure­
ment. It is hoped that some of the guess work can be 
removed by the use of equations of state. 

Recent work (McWhan, 1967), using x-rays to detect 
volume change, indicates that the bulk modulus is not 
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linear with pressure and that the simple two-parameter, 
Murnaghan equation, equation (2), will always yield 
too large a pressure f<!r a given compression. This equa­
tion, however; will yield reliable pressure to within 3 
percent for VIVo> 0.9, i.e., where terms of higher order 
than linear jn equation (8) can be neglected. However, 
for these small c~mpressions, equations (2) and (4) will 
give the -same results and the Birch equation appears 
to be valid to higher compression and is thus preferable. 
One advantage of the Murnaghan equation is its simple 
form, while still making a valuable interpolation tool 
at low pressures. A comparison of pressure differences 
determined from the Birch and Murnaghan equations 
versus compression for several values of B~ is given 
in figure 3. It will be noted that the Murnaghan equation 
always predicts a larger pressure than the Birch equation 
for any value of B~. If one expands the bulk modulus 
calculated from (4) in a power series of P, one finds 
B~=- (B~2-7B~+143/9)IBo, which is always negative 
and never zero. 

Two experiments which definitely favor the Birch 
equation (4) over the Murnaghan equation (2) have 
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FIGURE 3. Ratio of pressures (rom the Birch to the Murnaghan 
equations. 

recently been completed (McWhan, 1967; Weaver, et al., 
1967). In these experiments, MgO and NaCl, two 
materials with very different compressibilities, were 
intimately mixed in a high pressure x-ray cell and their 
lattice parameters simultaneously measured at various 
pressures. If the pressure was then calculated from the 
MgO compression using (2) or (4), which agreed to 
within 1 percent to 300 kbar, the P-V relation of NaC} 
agreed with (4) to within 10 percent but definitely dis­
agreed with (2). McWhan used results of Bartels and 
SChuele (1965) for Bo and B~for NaCL Better agreeme~t 
with (4) would follow if the results of Chang (1965) were 
used for B~, i.e.,isothermaIB~= 5.18± .09. 

It was concluded that the Birch equation (4) was the 
most reliable of these two parameter equations con­
sidered. It should also be added, however, that all the 
equations based on the theory of finite strain are valid 
only for cubic crystals in hydrostatic media. 


